If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-8r-13=0
a = 1; b = -8; c = -13;
Δ = b2-4ac
Δ = -82-4·1·(-13)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{29}}{2*1}=\frac{8-2\sqrt{29}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{29}}{2*1}=\frac{8+2\sqrt{29}}{2} $
| -30=5(x+9) | | h+27=55 | | (2,1)m=-3 | | 4n+8=2n+6 | | y+18=22 | | -1/3x-6=x-14 | | -5/8m=5 | | b+1=64 | | 1/2d+9=2 | | X^2+9=5x | | p+18=34 | | u^2-2u-19=0 | | 3/5x+3=x | | -45+x=-2x+24 | | 62=r-20 | | u2–2u–19=0 | | -8(5x-2)=136 | | 7+5b=6b | | 3=q/4 | | 20x+5=24x-1=85° | | -16x+3-12=23 | | z+1/4=6 | | h-7/2=5 | | 53.20+5n+8(20-n)=171.20 | | 5x-3(x-3)=-7+5x+10 | | 7/12x=6 | | 5/4x^2-18x+48=0 | | -6x+2(x+5)=38 | | =22m4 | | 138=-7(-7-2x)+5 | | 3a+2a=35 | | -19=-53a-11 |